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Introduction

The split feasibility problem was first introduced by Censor and Elfving

for modeling certain inverse problems in 1994. The split feasibility problem

(SFP, for short) is formulated as follows:

Find an element x† ∈ C such that T (x†) ∈ Q, (SFP)

where C and Q are nonempty, closed and convex subsets of real Hilbert spaces

H1 and H2, respectively, T : H1 → H2 is a bounded linear operator (also known

as a transfer operator).

It is easy to see that the convex feasibility problem is a special case of the

(SFP). The (SFP) contains many applications to the image reconstruction prob-

lems, the intensity–modulated radiation therapy (IMRT ) model, data transmis-

sion problems . . . by appropriately constructing the sets C, Q and the operator

T .

To solve the (SFP), Censor and Elfving proposed the parallel iteration method

and the cyclic iteration method based on the Bregman projection method

in 1994. However, these algorithms have a drawback that each iteration in-

volves computing inverse matrices. Calculating matrix inverses at each iterative

step leads to high computational costs for large-scale practical problems. To

overcome this limitation, in 2002, Byrne proposed the CQ algorithm in finite-

dimensional spaces when the sets C and Q are chosen so that the orthogonal

projections onto these sets can be easily computed.

Using an optimization approach, Xu developed the CQ algorithm to solve

the (SFP) in infinite-dimensional real Hilbert spaces in 2010. The author

showed that the iterative sequence generated by the CQ algorithm only con-

verges weakly with the chosen step size depending on the norms of the transfer

operator. The author also gave an example about the existence of the sets C,

Q and the operator T in an infinite-dimensional real Hilbert space to show that

the interative sequence generated by the CQ algorithm converges weakly but

not strongly.

Xu showed that the solution set of the (SFP) coincides with the fixed point

set of the nonexpansive mapping S : H1 → H1 defined by

S := PC

[
I − γT ∗(I − PQ)T

]
,

where γ ∈ (0, 2/∥T∥2), as well.
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Therefore, the methods for finding fixed points of nonexpansive mappings can

be applied to solve the (SFP) such as the Mann iteration method, the Halpern

iteration method, the viscosity approximation method . . .

A generalized form of the (SFP) is the multiple-set split feasibility problem

(MSSFP, for short) which was proposed and studied by Censor et al. in 2005.

Namely, let C1, C2, . . . , CN be N nonempty, closed, convex subsets of a real

Hilbert space H1 and Q1, Q2, . . . , QM be M nonempty, closed, convex subsets

of a real Hilbert space H2. The (MSSFP) is formulated as follows:

Find an element x† ∈
N⋂
i=1

Ci such that T (x†) ∈
M⋂
j=1

Qj . (MSSFP)

In 2006, Xu extended the CQ algorithm to solve the (MSSFP) based on ap-

proaching the fixed point method. The author proposed and proved the weak

convergence of the iterative sequences defined by the Picard iteration algorithm,

the parallel iteration algorithm and the cyclic iteration algorithm for solving

the (MSSFP). To obtain the strong convergence, many mathematicians have

studied the combination of the CQ method with the viscosity approximation

method, the hybrid projection method, the shrinking projection method, the

Halpern iteration method and others. However, these methods typically use a

fixed step size that depends on information about the norm of the transfer oper-

ator T per each iteration. In general, calculating the operator norm T is not an

easy task in practice. Therefore, establishing criteria for selecting the step size

when the norm information of the transfer operator is unknown is a meaningful

topic in computational practice. In recent years, many authors have studied to

improve the CQ method for solving the (SFP) or the (MSSFP) so that the step

size does not need any prior information of the norm of the transfer operators.

The (SFP) can be considered as a special case of the split common null

point problem (SCNPP, for short). A generalized form of the (SCNPP) is the

multiple-set split common null point problem (MSSCNPP, for short), which is

stated as follows: Let Ai : H1 → 2H1, i = 1, 2, . . . , N and Bj : H2 → 2H2,

j = 1, 2, . . . ,M be maximal monotone operators in H1 và H2, respectively.

Find an element x† ∈ ∩N
i=1A

−1
i (0) ∩ T−1

(
∩M
j=1 B

−1
j (0)

)
. (MSSCNPP)

Furthermore, we see that the (SCNPP) or the (MSCNPP) can be reduced to

the split common fixed point problems (SCFPP). The generalized form of the

(SCFPP, for short) is formulated as follows: Let Si : H1 → H1, i = 1, 2, . . . , N

and Ξj : H2 → H2, j = 1, 2, . . . ,M be nonexpansive mappings on H1 and H2,
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respectively. Let T : H1 → H2 be a bounded linear operator.

Find an element x† ∈ ∩N
i=1 Fix(Si) ∩ T−1

(
∩M
j=1 Fix(Ξj)

)
. (SCFPP)

The (SFP), (SCFPP), (SCNPP) and the other related problems can be

rewritten in the following generalized form: Let X and Y be two Hilbert or

Banach spaces and let T : X → Y be a mapping from X into Y . Suppose that

(P1) and (P2) are two given problems on X and Y , respectively. Consider the

problem: Find an element x† in X such that x† is a solution of the Problem

(P1) and T (x†) is a solution of the Problem (P2). We denote this problem as

(P ). The generalized form of the (P ) is stated as follows: Let X1, X2, . . . , XN

be Hilbert or Banach spaces and let Ai : Xi → Xi+1, i = 1, 2, . . . , N − 1, be

mappings from Xi into Xi+1. Suppose that (Pi), i = 1, 2, . . . , N , are N given

problems on Xi, respectively. Then the generalized form of the (P ) is the prob-

lem of finding an element x† on X1 such that x† is a solution to (P1), A1(x
†)

is a solution to (P2). . . and AN−1(AN−2(. . . A2(A1(x
†)))) is a solution to (PN).

We denote this problem as (GP). There are many real-world problems that can

be formulated in the form of the (GP). For example, the balance problem in

a production line where the quantity of semi-finished products in the previous

production process must be equal to the required quantity in the next produc-

tion process. In 2019, Reich and Tuyen first proposed and studied the above

problem model, which named the generalized split feasibility problem (GSFP,

for short).

From the above analysis, we concern and study a several of class of the

problems that are more general than the (GSFP).

• Firstly, we propose and study the split feasibility problem with multiple

output sets (SFPMOS, for short). This problem is formulated as follows: Let

H, Hi, i = 1, 2, . . . , N be real Hilbert spaces, Ti : H → Hi, i = 1, 2, . . . , N , be

bounded linear operators, C ⊆ H and Qi ⊆ Hi, i = 1, 2, . . . , N , be nonempty,

closed and convex subsets.

Find an element x† ∈ ΩSFPMOS := C ∩ (∩N
i=1T

−1
i (Qi)) ̸= ∅, (SFPMOS)

that is, x† ∈ C and Tix
† ∈ Qi for all i = 1, 2, . . . , N.

A practical example of the (SFPMOS) is the image classification problem via

support vector machine learning with the MNIST dataset.

• Secondly, we concern and study the split common fixed point problem

with multiple output sets (SCFPPMOS, for short). This problem is defined as

follows: Let H and Hi be real Hilbert spaces and Ti : H → Hi, i = 1, 2, . . . , N

be bounded linear operators. Let Sj : H → H, j = 1, 2, . . . ,M , Ξi
k : Hi → Hi,



4

i = 1, 2, . . . , N , k = 1, 2, . . . ,Mi be nonexpansive mappings.

Find an element x∗ ∈ ΩSCFPPMOS, (SCFPPMOS)

where ΩSCFPPMOS :=
(
∩M
j=1 Fix(Sj)

)
∩
(
∩N
i=1 T

−1
i

(
∩Mi

k=1 Fix(Ξ
i
k)
))

.

The objective of the thesis is to study and propose algorithms for solving

classes of the split feasibility problems and the split common fixed point prob-

lems with multiple output sets in real Hilbert spaces. Specifically, the study

objectives are as follows.

� Propose CQ-type algorithms combined with the Halpern iteration method

and the viscosity approximation method to solve the (SFPMOS) and the

(SCFPPMOS);

� Propose algorithms for solving the (SCFPPMOS) using the hybrid and

shrinking projection techniques;

� Apply the proposed algorithms to some related problems;

� Provide and calculate some numerical examples to illustrate the effective

proposed algorithms.

In addition to the introduction, conclusion and list of references, the thesis

is presented in three chapters.

Chapter 1. Preliminaries

Chapter 2. Split feasibility problem with multiple output sets

Chapter 3. Split common fixed point problem with multiple output sets
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Chapter 1

Preliminaries

This chapter presents some basic concepts and properties about real Hilbert

spaces, convex sets and convex functions, metric projection, subdifferential and

minimization of convex functions, nonexpansive mappings and several lemmas

used in the next chapters.

1.1 A brief introduction to Hilbert spaces

1.2 Subdifferential and convex optimization problems

1.3 Nonexpansive mappings

1.4 Some auxilary lemmas
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Chapter 2

Split feasibility problem with multiple output
sets

In this chapter, we propose and study some interative methods to solve the

split feasibility problem with multiple output sets in Hilbert spaces based on

using optimal approaches. The content of this chapter is written based on the

results of two articles (CT1) and (CT2) in the List of published works related

to the thesis.

2.1 The optimization approachs to solving the split feasi-
bility problem with multiple output sets

We first recall the split feasibility problem with multiple output sets men-

tioned in the Introduction: Let H, Hi, i = 1, 2, . . . , N , be real Hilbert spaces

and let Ti : H → Hi, i = 1, 2, . . . , N , be bounded linear operators. Let C

and Qi be nonempty, closed and convex subsets of H and Hi, i = 1, 2, . . . , N ,

respectively.

Find an element x† ∈ C such that Tix
† ∈ Qi, ∀i = 1, 2, . . . , N. (2.1)

The solution set of Problem (2.1) is denoted by ΩSFPMOS, that is

ΩSFPMOS = {x† ∈ C | Tix
† ∈ Qi, ∀i = 1, 2, . . . , N}.

In this chapter, we always suppose that ΩSFPMOS ̸= ∅.

2.1.1 The first optimal approach

Let g : H → R be a function defined by

g(x) :=
1

2

N∑
i=1

∥(I − PQi)Tix∥2, ∀x ∈ H.

We see that g is a convex function on H. Besides, it is not hard to show that

Problem (2.1) is equivalent to the following convex constrained optimization
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problem:

min
x∈C

g(x).

In other words, x† is a solution to Problem (2.1) if and only if

0 ∈ ▽g(x†) +NC(x
†).

The above inclusion is equivalent to

0 ∈
N∑
i=1

T ∗
i (I − PQi)Tix

† +NC(x
†).

Using the definition of the normal cone to C at the point x and the properties

of metric projection, we obtain

x† = PC

[
x† − γ

N∑
i=1

T ∗
i (I − PQi)Tix

†], (2.2)

where γ is an arbitrary positive real number. It also follows from the

equality (2.2) that an element x† is a solution of Problem (2.1) if and only

if it is a fixed point of the nonexpansive mapping:

PC

[
I − γ

N∑
i=1

T ∗
i (I − PQi)Ti

]
.

From these analysis, we propose and study the following iterative algorithm

for solving Problem (2.1).

Algorithm 2.1.1.

Step 0. – Choose x0 ∈ C arbitrary;

– Choose a sequence {γn}, which satifies

0 < a ≤ γn ≤ b <
2

N maxi=1,N{∥Ti∥2}
, n ≥ 0. (γ1)

Set n := 0.

Step 1. Compute

xn+1 = PC

[
xn − γn

N∑
i=1

T ∗
i (I − PQi)Tixn

]
. (2.3)

Step 2. Set n := n+ 1 and go to Step 1.

We have the following result.
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Theorem 2.1.1. The sequence {xn} generated by Algorithm 2.1.1 converges

weakly to a solution of Problem (2.1).

Remark 2.1.2. (i) When N = 1 and H = Rn, Algorithm 2.1.1 becomes

the CQ Algorithm which is proposed by Byrne proposed in 2002 to solve

Problem (SFP).

(ii) When N = 1, Algorithm 2.1.1 reduces to the algorithm proposed by Xu in

2010 to solve the (SFP) in an infinite-dimensional real Hilbert space.

In order to obtain the strong convergence, we combine Algorithm 2.1.1 with

the Halpern iteration method. We get the following algorithm.

Algorithm 2.1.2.

Step 0. – Choose x0, u ∈ C.

– Choose a sequence {γn} satisfying the condition (γ1);

– Choose {αn} satisfying condition

{αn} ⊂ (0, 1), lim
n→∞

αn = 0,
∞∑
n=0

αn = ∞. (α)

Set n := 0.

Step 1. Compute

xn+1 = αnu+ (1− αn)PC

[
xn − γn

N∑
i=1

T ∗
i (I − PQi)Tixn

]
. (2.8)

Step 2. Set n := n+ 1 and go to Step 1.

The strong convergence of Algorithm 2.1.2 is given in the theorem below.

Theorem 2.1.3. The sequence {xn} is generated by Algorithm 2.1.2 converges

strongly to PΩSFPMOS u.

Next, we propose and study a more general algorithm when u is replaced by

the value of a contraction mapping at a point x.
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Algorithm 2.1.3.

Step 0. – Choose y0 ∈ C;

– Choose a sequence {γn} satisfying condition (γ1);

– Choose {αn} satisfying condition (α);

– Choose f : H → C being a contraction mapping with a contraction

coefficient c ∈ [0, 1).

Set n := 0

Step 1. Compute yn+1 as follows:

yn+1 = αnf(yn) + (1− αn)PC [yn − γn

N∑
i=1

T ∗
i (I − PQi)Tiyn]. (2.19)

Step 2. Set n := n+ 1 and go to Step 1.

The strong convergence of the iterative sequence generated by Algorithm 2.1.3

is established in the following theorem.

Theorem 2.1.4. The sequence {yn} is generated by Algorithm 2.1.3 converges

strongly to a point x† ∈ ΩSFPMOS, which is the unique solution to the variational

inequality

⟨(I − f)x†, y − x†⟩ ≥ 0, ∀y ∈ ΩSFPMOS. (VIP(I − f,ΩSFPMOS))

2.1.2 The second optimal approach

Now, we consider the function h : H → R defined by

h(x) := ( max
i=1,2,...,N

fi)(x), ∀x ∈ H

and

fi(x) :=
1

2
∥(I − PQi)Tix∥2, i = 1, 2, . . . , N.

It is not dificult to see that Problem (2.1) is equivalent to the following convex

constrained optimization problem:

min
x∈C

h(x). (2.21)

So, an element x† is a solution of Problem (2.21) if and only if

0 ∈ ∂h(x†) +NC(x
†).

We have

∂( max
i=1,2,...,N

fi)(x
†) ⊇ co{

⋃
i∈I(x†)

∂fi(x
†)},
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where I(x†) :=
{
i ∈ {1, 2, . . . , N} | fi(x†) = ( max

i=1,2,...,N
fi)(x

†)
}
. Thus, if the

element x† ∈ H satisfies

co{
⋃

i∈I(x†)

∂fi(x
†)}+NC(x

†)} ∋ 0 (2.22)

then x† is a solution of Problem (2.21) and it is also a solution of Problem (2.1).

We can prove that (2.22) is equivalent to

x† = PC [x
† − γ

∑
i∈I(x†)

λiT
∗
i (I − PQi)Tix

†], (2.23)

where λi ≥ 0 for all i ∈ I(x†),
∑

i∈I(x†)

λi = 1 and γ is an arbitrary positive

real number.

The equality (2.23) suggests us to construct the two algorithms below that

approximate to the solution to the Problem (2.1) based on the Halpern iteration

method and the viscosity approximation method.

Algorithm 2.1.4.

Step 0. – Choose x0 ∈ C and {ρn} ⊂ [a, b] ⊂ (0, 2) and set n := 0.

Step 1. Compute

xn+1 = PC [xn − γn
∑

i∈I(xn)

λi,nT
∗
i (I − PQi)Tixn}], (2.24)

where I(xn) = {i | ∥Tixn −PQiTixn∥ = max
i=1,2,...,N

∥Tixn −PQiTixn∥}, λi,n ≥ 0 for

all i ∈ I(xn),
∑

i∈I(xn)

λi,n = 1 and dn = max
i=1,2,...,N

∥Tixn − PQiTixn∥, the step size

{γn} is defined by

γn =


ρn

d2n
∥
∑

i∈I(xn)

λi,nT ∗
i (I−PQi)Tixn∥2

if ∥
∑

i∈I(xn)

λi,nT
∗
i (I−PQi)Tixn∥>0,

0 otherwise.

(γ2)

Step 2. Set n := n+ 1 and go to Step 1.

Theorem 2.1.5. The sequence {xn} generated by Algorithm 2.1.4 converges

weakly to an element in ΩSFPMOS.

The following corollary indicates that the above theorem still remains valid

for a specific index in ∈ I(xn).
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Corollary 2.1.6. For any x0 ∈ C, let {xn} be a sequence generated by the

following iterative method:Choose in such that ∥Tinxn − PQin
Tinxn∥ = max

i=1,2,...,N
∥Tixn − PQiTixn∥,

xn+1 = PC [xn − γnT
∗
in(I − PQin

)Tinxn], n ≥ 0,

where {γn} is defined by

γn =

ρn
∥Tinxn − PQin

Tinxn∥2

∥T ∗
in
(I − PQin

)Tinxn∥2
, if ∥T ∗

in(I − PQin
)Tinxn∥ > 0,

0, otherwise,

and {ρn} ⊂ [a, b] ⊂ (0, 2). Then the sequence {xn} converges weakly to an

element in ΩSFPMOS.

Combining Algorithm 2.1.4 with the viscosity approximation method, we

propose the following algorithm for solving Problem (2.1) and establish a strong

convergence theorem for it.

Algorithm 2.1.5.

Step 0. – Choose x0 ∈ C arbitrary;

– Choose {ρn} ⊂ [a, b] ⊂ (0, 2);

– Choose {αn} satisfying condition (α);

– Choose f : H → C being a contraction mapping with a contraction

coefficient c ∈ [0, 1).

Set n := 0.

Step 1. Compute

xn+1=αnf(xn)+(1− αn)PC [xn − γn
∑

i∈I(xn)

λi,nT
∗
i (I − PQi)Tixn}], (2.33)

where I(xn) = {i | ∥Tixn−PQiTixn∥ = max
i=1,...,N

∥Tixn−PQiTixn∥}, λi,n ≥ 0 for

all i ∈ I(xn),
∑

i∈I(xn)

λi,n = 1, the sequence {γn} satisfies condition (γ2).

Step 2. Set n := n+ 1 and go to Step 1.

The following theorem presents the strong convergence of Algorithm 2.1.5.

Theorem 2.1.7. The sequence {xn} generated by Algorithm 2.1.5 converges

strongly to x†, which is the unique solution to the variational

inequality (VIP(I − f,ΩSFPMOS) ).
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The above theorem remains valid for specific in ∈ I(xn) .

Corollary 2.1.8. For any x0 ∈ C, let {xn} be a sequence generated by the

following iterative method:Choose insuch that ∥Tinxn − PQin
Tinxn∥ = max

i=1,2,...,N
∥Tixn − PQiTixn∥,

xn+1 = αnf(xn) + (1− αn)PC [xn − γnT
∗
in(I − PQin

)Tinxn], n ≥ 0,

where {γn} is defined by

γn =

ρn
∥Tinxn − PQin

Tinxn∥2

∥T ∗
in
(I − PQin

)Tinxn∥2
, if ∥T ∗

in(I − PQin
)Tinxn∥ > 0,

0, otherwise,

{ρn} ⊂ [a, b] ⊂ (0, 2) and f : H → C is a strict contraction mapping H into

C with the contraction coefficient c ∈ [0, 1). If the sequence {αn} satisfies the

conditions (α) then the sequence {xn} converges strongly to x†, which is the

unique solution to the variational inequality VIP(I − f,ΩSFPMOS) .

2.2 Applications and numerical examples

2.2.1 An Application to the generalized split feasibility problem

We know that when H = H1, C = C1, Qi = Ci+1, 1 ≤ i ≤ N − 1,

T1 = A1, T2 = A2A1, . . . and TN−1 = AN−1AN−2 . . . A1 then the (SFPMOS)

becomes the (GSFP). So we can use the algorithms and the theorems in Sec-

tion 2.1 to solve this problem. By substituting T1 = A1, T2 = A2A1, . . . and

TN−1 = AN−1AN−2 . . . A1, the sequences generated by four proposed algorithms

converge to a solution of the (GSFP).

2.2.2 Numerical examples

In this section, we present three numerical examples to illustrate the

efficiency of the proposed algorithms. Example 2.2.5 uses Algorithms 2.1.1,

2.1.4, 2.1.3 and 2.1.5 to solve the generalized split feasibility problem in

finite–dimensional Hilbert spaces and the sequence {xn} defined by Algorithms

2.1.3, 2.1.5 converges to exact solution x† = (0, 0, 0, 0) of the problem in this

example. Example 2.2.6 uses Algorithms 2.1.3 and 2.1.5 to solve the split

feasibility problem with multiple output sets in finite–dimensional Hilbert spaces

and we see that the sequence {xn} generated by the above two algorithms con-

verges to an element of the solution set of the problem under consideration

and we cannot calculate this solution exactly. Finally, Example 2.2.7 illustrates
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the effectiveness of the proposed algorithms to solve the split feasibility prob-

lem with multiple output sets in infinite–dimensional Hilbert spaces. In this

summary, we briefly present Example 2.2.7.

Example 2.2.7. In the Hilbert space L2[0, 1], we take a0(t) = sin t and

ai(t) = ti for all i = 1, 100, and choose the following nonempty, closed and

convex subsets:

C = {x ∈ L2[0, 1]| ⟨a0, x⟩ ≤ 1}; Qi = {x ∈ L2[0, 1]| ⟨ai, x⟩ ≤ 0}, ∀i = 1, 100,

The linear bounded operators: Ti : L
2[0, 1] → L2[0, 1] are given by Tix = ix

for all i = 1, 100.

We consider the following (SFPMOS):

Find x∗ ∈ ΩSFPMOS := C ∩

(
∩100
i=1 T

−1
i (Qi)

)
. (2.44)

It is easy to see that ΩSFPMOS ̸= ∅ because x(t) = 0 ∈ ΩSFPMOS.

We first examine the convergence of the iteractive sequence {xn} defined by

Algorithm 2.1.1 with γn = 10−6 and the convergence of the iteractive sequence

{xn} generated by Algorithm 2.1.4 with γn which satisfies Theorem 2.1.5 where

ρn = 0.15. We use the stopping run condition TOLn := ∥xn+1 − xn∥ < ε where

ε is a given tolerance.

To verify the convergence of the iteractive sequences generated by these al-

gorithms to an element in ΩSFPMOS, we further define the parameter.

m := max{⟨a0, xn⟩ − 1, max
i=1,100

{⟨ai, Tixn⟩}.

Note that, if m ≤ 0 then xn is a solution to Problem (2.44).

With the initial point x0(t) = et, we obtain the numerical results of Algo-

rithms 2.1.1 and 2.1.4 which are shown in Table 2.4.

From the numerical results presented in Table 2.4, we see that Algorithm

2.1.4 converges faster than Algorithm 2.1.1 in this example.

Next, we consider the convergence of the sequence {xn} generated by

Algorithm 2.1.3 and Algorithm 2.1.5 with αn = n−0.5 and a contraction map-

ping f : L2[0, 1] → C is defined by f(x) = PC(0.25x), for all x ∈ L2[0, 1], the

parameter γn = 5.10−5 for Algorithm 2.1.3 and γn which satisfies Theorem 2.1.5,

where ρn = 1.75 for Algorithm 2.1.5. In this case, it is easy to see that x∗(t) = 0

is the unique solution to the variational inequality VIP(I − f,ΩSFPMOS) .

Thus, we use the condition TOLn = ∥xn∥ < ε to stop the iterative process,

where ε is a given tolerance. The numerical results of Algorithms 2.1.3 and

2.1.5 are presented in Table 2.5
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ε Algorithm 2.1.1 Algorithm 2.1.4
10−4 TOLn 9.8880×10−5 9.6610×10−5

n 138 58
m 1.2567 0.0032
Time (s) 0.1136 0.0362

10−5 TOLn 9.984×10−6 9.9286×10−6

n 494 65
m 1.0543 0.0010
Time (s) 0.2629 0.0398

10−6 TOLn 9.9946×10−7 7.3721×10−7

n 1717 73
m 0.8486 2.7883×10−4

Time (s) 0.6776 0.0410
10−14 TOLn 1.0000×10−14 9.1730×10−15

n 3808549 129
m 0.0057 3.1103×10−8

Time (s) 1.2760×103 0.0621

Table 2.4: Table of numerical results for Algorithm 2.1.1 and 2.1.4

Algorithm 2.1.3 Algorithm 2.1.5
ε TOLn n Time (s) TOLn n Time (s)
10−4 6.2940×10−5 11 0.0137 8.0584×10−5 10 0.0106
10−5 6.6040×10−6 16 0.0174 7.7238×10−6 15 0.0127
10−6 9.8876×10−7 21 0.0309 7.6813×10−7 21 0.0218

Table 2.5: Table of numerical results for Algorithm 2.1.3 and 2.1.5

Table 2.5 shows that the convergence rates of Algorithm 2.1.3 and Algorithm

2.1.5 are almost the same in this example.
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Chapter 3

Split common fixed point problem with
multiple output sets

In this chapter, we propose and study a number of iterative methods to

approximate the solution to the split common fixed point problem with multiple

output sets in real Hilbert spaces based on CQ-type algorithm and projection

algorithms. The results of this chapter are written on the basis of articles (CT3)

and (CT4) in the List of published works related to the thesis.

3.1 Algorithm and convergence

In this chapter, we consider the split common fixed point problem with mul-

tiple output sets mentioned in the introduction of the thesis.

3.1.1 A CQ-type algorithm

The proposed algorithm has the following scheme.

Algorithm 3.1.1.

Step 0. – Choose x0 ∈ H arbitrary;

– Choose {ρn} ⊂ [c, d] ⊂ (0, 1);

– Choose {αn} satisfying condition (α);

– Choose the sequence {an} which is bounded ;

– Choose f : H → H which is a strict contraction mapping H into itself

with the contraction coefficient c ∈ [0, 1).

Set n := 1.

Step 1. Compute yj,n = Sjxn for all j = 1, 2, . . . ,M and let

dn = max
j=1,2,...,M

{∥yj,n − xn∥},

Ln = {j ∈ {1, 2, . . . ,M} | ∥yj,n − xn∥ = dn}.
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Step 2. Compute zik,n = Ξi
k(Tixn) for all i = 1, 2, . . . , N and k = 1, 2, . . . ,Mi,

and let

di,n = max
k=1,2,...,Mi

{∥zik,n − Tixn∥}, i = 1, 2, . . . , N,

Li,n = {k ∈ {1, 2, . . . ,Mi} | ∥zik,n − Tixn∥ = di,n}, i = 1, 2, . . . , N.

Step 3. Let Γn := max
{
dn, max

i=1,2,...,N
{di,n}

}
.

If dn = Γn, then choose jn ∈ Ln and let tn = yjn,n, Θ = I.

Else, where din,n = Γn, choose kn ∈ Lin,n, and let tn = zinkn,n, Θ = Tin.

Step 4. Compute un = xn − δnΘ
∗(Θxn − tn), where

δn = ρn
∥Θxn − tn∥2

∥Θ∗(Θxn − tn)∥2 + an
. (δn)

Step 5. Compute xn+1 = αnf(xn) + (1− αn)un, n ≥ 0.

Set n := n+ 1 and go to Step 1.

The following theorem yields the strong convergence of the sequence gener-

ated by Algorithm 3.1.1.

Theorem 3.1.3. The sequence {xn} generated by Algorithm 3.1.1 converges

strongly to an element x† ∈ ΩSCFPPMOS, which is the unique solution of the vari-

ational inequality (VIP(I − f,ΩSFPMOS) ) where ΩSFPMOS replaced by ΩSCFPPMOS.

3.1.2 Hybrid projection algorithm

Algorithm 3.1.2. For any starting point x0 ∈ H and set n := 1, the scheme

of the hybrid projection algorithm consists of five steps with Steps 1, 2, 3

implemented as Algorithm 3.1.1 and Steps 4, 5 are performed as follows:

Step 4. Define the subsets Cn and Qn of H as follows:

Cn = {z ∈ H | ∥tn −Θz∥ ≤ ∥Θxn −Θz∥},
Qn = {z ∈ H | ⟨x0 − xn, z − xn⟩ ≤ 0}.

Step 5. Compute xn+1 = PCn∩Qnx0. Set n := n+ 1 and go to Step 1.

The strong convergence of the sequence {xn} defined by Algorithm 3.1.2 is

demonstrated in the following theorem.

Theorem 3.1.7. Suppose the assumptions of the (SCFPPMOS) are satis-

fied. Then the sequence {xn} generated by Algorithm 3.1.2 converges strongly

to x† = PΩSCFPPMOS x0.
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3.1.3 Shrinking projection algorithm

Algorithm 3.1.3. For any starting point x0 ∈ H, let C0 = H and n := 1, the

scheme of the shrinking projection algorithm consists of five steps with Steps

1, 2, 3, also implemented as Algorithm 3.1.1 and Steps 4, 5 are performed as

follows:

Step 4. Define the subset Cn+1 of H as follows:

Cn+1 = {z ∈ Cn | ∥tn −Θz∥ ≤ ∥Θxn −Θz∥}.

Step 5. Compute xn+1 = PCn+1x0. Set n := n+ 1 and go to Step 1.

Theorem 3.1.12. Suppose the assumptions of the (SCFPPMOS) are satis-

fied. Then the sequence {xn} generated by Algorithm 3.1.3 converges strongly

to x† = PΩSCFPPMOS x0.

3.2 Applications

3.2.1 The split feasibility problem with multiple output sets

We consider the split feasibility problem with output sets in a more general

case than the problem stated in the Introduction. The problem is stated as

follows: Let H, Hi, i = 1, 2, . . . , N be the real Hilbert spaces . Let Ti : H → Hi,

i = 1, 2, . . . , N be bounded linear operators. Let Cj, j = 1, 2, . . . ,M be closed

and convex subsets of H. Let Qi
k, i = 1, 2, . . . , N where k = 1, 2, . . . ,Mi, be

closed and convex subsets of Hi, .

Find an element x† ∈ Ci, ∀j = 1, 2, . . . ,M such that

Tix
† ∈ Qi

k, ∀i = 1, 2, . . . , N ; k = 1, 2, . . . ,Mi. (GSFPMOS)

The solution set of the (GSFPMOS) is denoted by ΩGSFPMOS and we always

suppose ΩGSFPMOS ̸= ∅.
In Algorithm 3.1.1, 3.1.2 and 3.1.3, replacing Sj = PCj for all j = 1, 2, . . . ,M

and Ξi
k = PQi

k
for all i = 1, 2, . . . , N , k = 1, 2, . . . ,Mi, we obtain CQ-type

algorithm, hybrid projection algorithm and shinking projection algorithm to

solve the (GSFPMOS) without any information about the norm of the

transfer operator.

3.2.2 The split common fixed point problem for nonexpansive map-

pings

Applying Algorithm 3.1.1, 3.1.2 and 3.1.3 in the case of N = 1, we get three

algorithms to solve the split common fixed point problem for nonexpansive
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mappings.

3.2.3 The fixed point problem for nonexpansive mappings

Applying Algorithm 3.1.1, 3.1.2 and 3.1.3, we also have corresponding

algorithms to solve the fixed point problem for non-expansive mappings

presented in Corollaries 3.2.5, 3.2.6 and 3.2.7 of the thesis.

3.3 Numerical examples

In this section, we introduce three numerical examples to illustrate the ef-

fectiveness of the proposed algorithms. Examples 3.3.1 and 3.3.2 consider the

(SFPMOS) and the (SCFPPMOS) in finite–dimensional Hilbert spaces. Ex-

ample 3.3.1 illustrates that the iterative sequence generated by the proposed

algorithms converges to an element in the solution set of the problem, but we

can not accurately determine this solution. Example 3.3.2 shows that the it-

erative sequence generated by the proposed algorithms converges to an exact

solution of this problem. Example 3.3.3 solves the problem in Example 2.2.7

using the hybrid projection method and the shinking projection method. In

this summary, we briefly present Example 3.3.2.

Example 3.3.2. Let g, g1, g2, g3 and g4 be the functions on R5, R2, R3, R4,

R6 , respectively, which are defined as follows:

g(x) =
1

2
(x1 − x2 + x3 − x4 − 2x5 − 1)2, for all x = (x1, x2, x3, x4, x5) ∈ R5;

g1(y) =
1

2
(y1 + y2 − 5)2, for all y = (y1, y2) ∈ R2;

g2(z) =
1

2
(2z1 + z2 − z3 − 4)2, for all z = (z1, z2, z3) ∈ R3;

g3(u) =
1

2
(u1 − u2 − u3 + u4 − 1)2, for all u = (u1, u2, u3, u4) ∈ R4;

g4(v) =
1

2
(v1 + 2v2 − v3 + v4 + v5 + v6)

2, for all v = (v1, v2, v3, v4, v5, v6) ∈ R6.

The transfer mappings

T1 : R5 → R2 is defined by T1y = [y1, y2]
⊤;

T2 : R5 → R3 is defined by T2z = [z1, z2, z3]
⊤;

T3 : R5 → R4 is defined by T3u = [u1, u2, u3, u4]
⊤;

T4 : R5 → R6 is defined by T4v = [v1, v2, v3, v4, v5, v6]
⊤.
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The representing matrices of the transfer mappings T1, T2, T3 and T4

are, respectively,

T1 =

(
1 −1 2 1 0

2 −2 1 −4 −4

)
, T2 =

1 1 −1 0 1

1 −1 0 1 2

1 3 −4 3 6

 ,

T3 =


1 1 1 −1 1

2 1 0 −1 1

1 0 1 1 −1

1 1 −1 2 3

 , T4 =



1 1 1 1 1

1 −1 1 0 1

2 1 0 1 1

−1 1 1 1 1

1 0 0 −1 1

1 −1 −2 −2 −10


.

We consider the following problem: Find an element x∗ ∈ R5 such that

x∗ ∈ arg min
x∈R5

g(x); T1x
∗ ∈ arg min

y∈R2
g1(y); T2x

∗ ∈ arg min
z∈R3

g2(z);

T3x
∗ ∈ arg min

u∈R4
g3(u); T4x

∗ ∈ arg min
v∈R6

g4(v) .

Let Ω be a solution set of this problem. It is not difficult to check that g and gi,

i = 1, 2, 3, 4 are convex functions and Ω = {(a−b+c+3, a, b, c, 1) : a, b, c ∈ R}.
We can see that this problem is equivalent to the problem: Find an element

x∗ ∈ R5 such that

x∗ ∈ ∇g−1(0);T1x
∗ ∈ ∇g−1

1 (0);T2x
∗ ∈ ∇g−1

2 (0);

T3x
∗ ∈ ∇g−1

3 (0);T4x
∗ ∈ ∇g−1

4 (0).

In this example,∇g and∇gi, i = 1, 2, 3, 4 are maximal monotone operators and,

thus, (I + ∇g)−1 and (I + ∇gi)
−1 for all i = 1, 2, 3, 4 are nonexpansive maps.

Therefore, the above problem is equivalent to finding the split common fixed

point problem with multiple output sets: Find an element x∗ ∈ R5 such that

x∗∈Fix

(
(I +∇g)−1

)
;T1x

∗∈Fix

(
(I +∇g1)

−1

)
;T2x

∗∈Fix

(
(I +∇g2)

−1

)
;

T3x
∗ ∈ Fix

(
(I +∇g3)

−1

)
; T4x

∗ ∈ Fix

(
(I +∇g4)

−1

)
.

We denote ΩSCFPPMOS as a solution set of the Problem (SCFPPMOS). We have

Ω SCFPPMOS ≡ Ω = {(a− b+ c+ 3, a, b, c, 1) : a, b, c ∈ R}.
We now test the convergence of Algorithms 3.1.1, 3.1.2 and 3.1.3, where the

nonexpansive mappings S1 = (I +∇g)−1; Ξi = (I +∇gi)
−1 for all i = 1, 2, 3, 4,

the parameters αn = n−1, an = 0.00001, ρn = 0.95, x0 = (1,−1, 1,−1, 1),
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the contraction mapping f : R5 → R5 is defined by f(xn) = x0, for all

n ≥ 1. The sequence {xn} gernerated by the above algorithms converges

strongly to x∗ = PΩSCFPPMOS x0 = (0.75,−0.75, 0.75,−0.75, 1). In this case, we

can easily see that x∗ is also the unique solution to the variational inequality

VIP(I − f,ΩSFPMOS) in which we replace ΩSFPMOS by Ω SCFPPMOS. Thus, we

use the stopping run condition TOLn := ∥xn − x∗∥ < ε, where ε is a given

tolerance.

With the starting point x0 = (1,−1, 1,−1, 1), Table 3.3 illustrates the con-

vergence of the three proposed algorithms.

ε Algorithm 3.1.1 Algorithm 3.1.2 Algorithm 3.1.3
10−4 TOLn 9.9881×10−5 9.9141×10−5 5.2862×10−5

n 621 175 14
Time (s) 0.0400 1.3368 0.0820

10−5 TOLn 9.9965×10−6 9.9752×10−6 4.6409×10−6

n 2526 979 19
Time (s)) 0.1313 5.9919 0.1082

10−6 TOLn 9.9998×10−7 9.9967×10−7 9.1672×10−7

n 23854 3899 23
Time (s) 1.1318 26.6064 0.1204

Table 3.3: Table of numerical results for Algorithm 3.1.1; 3.1.2 and 3.1.3

The numerical results in Table 3.3 show that, for the same given tolerance,

Algorithm 3.1.3 requires the least amount of time and number of iterations,

while Algorithm 3.1.2 requires fewer iterations than Algorithm 3.1.1 but takes

more time.
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Conclusions

The thesis focuses on proposing and studying the algorithms for solving the

(SFPMOS) and the (SCFPPMOS). New algorithms are studied based on the

CQ method, the viscosity approximation method, the Halpern iteration method

and projection method.

The thesis has achieved the following results

� We have proposed five algorithms to solve the (SFPMOS) (Algorithm 2.1.1–

2.1.5). We have also proposed and proven the weak and the strong conver-

gence theorems for these algorithms. We developed these algorithms from

Byrne’s CQ algorithm for the split feasibility problem in finite–dimensional

Hilbert spaces based on the optimal approach. The advantage of Algo-

rithms 2.1.1–2.1.3 is the simplicity of calculation at each iteration. The

advantage of Algorithms 2.1.4 and 2.1.5, besides the simplicity of compu-

tation at each iteration, is that the step size does not depend on any prior

information about the norms of the tranfer operators. These results are

shown in the works (CT1) and (CT2).

� We have proposed three algorithms to approximate the solution of the

(SCFPPMOS) (Algorithm 3.1.1–3.1.3). We have proposed and proven the

weak and the strong convergence theorems for these algorithms, too. By

using CQ method, hybrid projection techniques and shinking projection

techniques combined with the viscosity approximation method, we have

designed algorithms with self-adaptive step sizes. These results are pre-

sented in the works (CT3) and (CT4).

� These algorithms are applied to the generalized split feasibility problem,

the split feasibility problems with multiple output sets, the split common

fixed point problem for nonexpansive mappings or the fixed point prob-

lem for nonexpansive mappings. Numerical experimental results in finite–

dimensional real Hilbert space as well as infinite– dimensional real Hilbert

space have shown the effectiveness of the proposed methods.
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Some future study directions

The following are the directions that we will continue to study after

finishing the thesis.

� Study the split feasibility problem and the related problems in Banach

spaces.

� Explore the (SFPMOS) when at least one constraints set is not convex or

at least one transfer operator is nonlinear.

� Study the stability of algorithms when the input data is noisy.

� Evaluate the convergence speed of algorithms.
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